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Abstract. Optical nonlinearity is sensitive to the microstructure of materials. When metal
clusters are structured on the nanometre scale, they exhibit a strong nonlinear optical response
through the local-field and geometric-resonance effects. In this work, we analyse a model of
anisotropic microstructure and examine the effect on the optical nonlinearity in the quasi-static
limit. To model anisotropic microstructures, a composite medium is conveniently represented
by a random impedance network which consists of both metallic and dielectric bonds. For these
networks, we performed numerical simulations in which the metallic bonds are assumed to obey
the Drude free-electron model. The results show that the absorption peak can be separated from
the nonlinearity enhancement peak, and hence that an even larger optical nonlinearity can be
achieved than that reported in the literature.

1. Introduction

With the advent of high-power coherent light sources, optical nonlinearity has become a
rapidly growing field. A variety of phenomena arise in systems with a nonlinear response.
In order to open new possibilities in information processing and transmission, a large opt-
ical nonlinearity is desirable [1]. While the search for new materials with a large optical
nonlinearity continues, the use of composite materials has been advocated for some time as a
means of enhancing the optical nonlinearity. These materials typically consist of small metal
particles embedded in a dielectric host. Recently the optical nonlinearity of nanostructured
materials has attracted much attention [2]. In particular, metal clusters exhibit a strong
nonlinear optical response when they are structured on the nanometre scale, through the
local-field and geometric-resonance effects [3]. These composites are also known to give
rise to an anomalously large absorption in the infrared spectrum [4–6].

In this work, we analyse a model of anisotropic microstructure, which can be induced
by the electrorheological (ER) effect [7]. It was demonstrated that the absorption peak
can be separated from the nonlinearity enhancement peak, and hence that the figure
of merit can be increased [3]. To examine the effect of microstructure on the optical
nonlinearity in the quasi-static limit, we consider the displacement–field response of the
form D = (ε + χ |E|2)E, whereε is the (generally complex) dielectric constant andχ
is the third-order nonlinear susceptibility. Our aim is to calculate the effective linear and
nonlinear optical responses of the composites.

Although the problem of finding the overall response of composites is relatively old,
and significant advances have been made, an exact analytic solution is lacking [8]. One of
the most fruitful approaches is to invoke the macroscopic concept of local fields, so that the
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solution of a genuine many-body problem is reduced to the determination of an effective
medium. The effective-medium theories have been applied to electrical transport properties
of composite materials and the results agree with experimental data [8]. To analyse the
optical response, however, it is more convenient to adopt the spectral representation [9, 10].

The spectral representation [9, 10] is a mathematically rigorous formalism of the
effective dielectric constant (equation (5) below). It offers the advantage of the separation
of material parameters from the geometric information, which is contained in the spectral
functionm(s). With a given microstructure,m(s) can be evaluated. Moreover,m(s) satisfies
a sum rule, which implies that an increase ofm(s) in some region must be balanced by a
decrease of that in another region. Hence the absorption is directly linked to the behaviour
of m(s).

In a recent work [3], the knowledge ofm(s) was employed to calculate the eff-
ective dielectric constant as well as the optical nonlinearity within the effective-medium
approximation. To validate the effective-medium calculations [3], we perform numerical
simulations. For numerical simulations, a composite medium is conveniently modelled by
a random impedance network. We shall focus only on two-dimensional networks which
correspond to thin films. The generalization to three dimensions is straightforward. Note
that the problem of solving for the electric field in a dielectric medium in the quasi-static
limit is the same problem as solving for that in a conducting medium. The thermodynamic
limit corresponds to an infinite network size, which can never be achieved due to the
limitation of computer resources. In what follows, ignoring the finite-size effect will be
justified.

The organization of the paper is as follows. In the next section (section 2), we define
a model of anisotropic microstructure and discuss the dielectric resonance of clusters of a
few bonds. Then in section 3 we review the anisotropic effective-medium approximation,
which will be used to calculate the effective linear and nonlinear response functions. In
section 4, numerical simulations will be performed on random impedance networks; the
results will be compared with the effective-medium calculations. In section 5, we present
results on the absorption and nonlinearity enhancement for the optical field polarized both
parallel and perpendicular to the axis of uniaxial anisotropy. A summary of our results will
be given.

Figure 1. Four types of lattice animals dominant in the dilute limit.
(a) A cluster of one bond; (b), (c), (d) clusters of two bonds.

2. The dielectric resonance of lattice animals

To examine the effect of anisotropy on the optical response, we consider uniaxial anisotropic
composites, modelled by random-bond-substitution networks [10]. Two independent
occupation probabilitiesp‖ and p⊥ are assigned to the metallic bonds along the parallel
and perpendicular directions respectively. In the limit of a small volume fractionp of
metallic bonds, the spectral function is dominated by isolated clusters of a few bonds
(lattice animals [10, 11]) as shown in figure 1. For example, the probability of occurrence
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Table 1. Value(s) of the resonances of four dominant lattice animals.

Type Analytics Numericals

(a) 1/2 0.500 000

(b) 1/π 0.318 310
1− 1/π 0.681 690

(c) 1− 2/π 0.363 380

(d) 2/π 0.636 620

of type (a) clusters depends on the presence of a bond with probabilityp as well as on
the absence of its six nearest-neighbouring bonds with probability 1− p. For isotropic
networks, the probabilities of occurrencePi for the four dominant lattice animals are

Pa = p(1− p)6 Pb = 4p2(1− p)8 Pc = p2(1− p)8 Pd = p2(1− p)10

respectively. In the dilute limit, type (a) clusters give the most pronounced contribution to
the spectral density ats = 1

2 because it is of first order inp. Whereas type (b) clusters
contribute a doublet, symmetric abouts = 1

2, type (b), (c) and (d) clusters are of roughly
the same strength, proportional top2. Analytic expressions for the resonance positions for
typical lattice animals and fractal clusters can be found in a recent formalism [10]. The
corresponding resonances values are listed in table 1.

Figure 2. The spectral function for isotropic random impedance networks. Each data point
represents an ensemble average for 1000 samples withL = 15. The volume fractionp = 0.02
and the imaginary partη = 0.002. The resonance positions are labelled with the respective
types of lattice animals.

Figure 2 shows the numerical spectral function (equation (6) below) for isotropic net-
works with a small volume fractionp = 0.02. The resonances for the dominant lattice
animals are indicated by dashed lines and labelled with the corresponding types. The
numerical spectral function shows a good agreement with a recent calculation using the
propagating algorithm [11]. Resonance peaks of small amplitudes other than the dominant
ones are due to clusters composed of three or more bonds. Moreover, the contribution
of a cluster to the spectral density can be changed substantially by rotating it through
90◦. When each of the type (a), (c) or (d) clusters is rotated by 90◦, the resulting cluster
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becomes decoupled from the applied field and hence there is no contribution to the spectral
density [11].

For anisotropic networks, the probabilities of occurrence for the respective lattice
animals are modified to

Pa = p‖(1− p‖)2(1− p⊥)4 Pb = 4p‖p⊥(1− p‖)4(1− p⊥)4
Pc = p2

‖(1− p‖)2(1− p⊥)6 Pd = p2
‖(1− p‖)4(1− p⊥)6

respectively. Thus by tuning the aspect ratiop⊥/p‖, one can modify the probabilities of
occurrence of the different lattice animals and hence the spectral function. For example,
increase of the anisotropy would decrease the weight of the type (a) cluster.

3. The anisotropic effective-medium approximation

When an intense dc electric field is applied to a composite medium during the annealing
process, the ER effect induces the formation of chainlike anisotropic structures. The degree
of anisotropy is characterized by a relation between the occupation probabilitiesp‖ and
p⊥ to mimic the structure formation process:p2 = p‖p⊥. Hence for a givenp andp‖,
p⊥ is calculated fromp⊥ = p2/p‖. We calculate the optical response both parallel and
perpendicular to the axis of uniaxial anisotropy.

We first solve the problem in the effective-medium approximation (EMA). The coupled
EMA self-consistency equations for anisotropic media read [12]

p‖
ε1− ε‖
ε1+ z‖ε‖ + (1− p‖)

ε2− ε‖
ε2+ z‖ε‖ = 0 (1)

p⊥
ε1− ε⊥
ε1+ z⊥ε⊥ + (1− p⊥)

ε2− ε⊥
ε2+ z⊥ε⊥ = 0 (2)

wherez‖ andz⊥ are the parameters parallel and perpendicular to the applied dc field;ε1 and
ε2 are the constituent dielectric functions;ε‖ and ε⊥ are the effective dielectric functions
parallel and perpendicular to the applied dc field. In two dimensions (2D), thez-parameters
are given by [12]

z‖ =
tan−1

√
ε⊥/ε‖

tan−1
√
ε‖/ε⊥

(3)

z⊥ =
tan−1

√
ε‖/ε⊥

tan−1
√
ε⊥/ε‖

. (4)

In what follows, we simplify our notation using an indexα = ‖,⊥. For two-component
composites, it has proved convenient to adopt the spectral representation of the effective
linear response [9]: letv = 1− ε1/ε2, wα = 1− εe/ε2 ands = 1/v; we find

wα(s) =
∫ 1

0

mα(s
′) ds ′

s − s ′ (5)

wheremα(s ′) is the spectral density which is obtained through a limiting process:

mα(s
′) = lim

η→0+
− 1

π
Imwα(s

′ + iη). (6)

Equations (1)–(4) can readily be solved in the spectral representation. In our numerical
calculation, we choose the real part at several hundred equally spaced values across the
interval 06 s ′ 6 1, and the imaginary partη to be some small positive value. The actual
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value ofη is unimportant. We found thatη = 0.002 gives acceptable results by checking
the sum rule:∫ 1

0
mα(s

′) ds ′ = pα. (7)

We have setε2 = 1, andε1 is calculated froms = s ′ + iη.
For isotropic networks,p⊥ = p‖, z‖ = z⊥ = 1 and the EMA self-consistency equations

can be solved analytically. The spectral density is given by

m(s ′, p) =
√
p(1− p)− (s ′ − 1

2)
2

πs ′
(8)

valid for 06 p(1− p)− (s ′ − 1
2)

2. At pc = 1
2, we have

m(s ′, pc) = 1

π

√
1− s ′
s ′

(9)

which is indeed an exact result by virtue of the duality symmetry in 2D. Other
relevant physical quantities can also be calculated from the spectral representation. If
a plane-polarized electromagnetic wave of amplitudeE0 with the polarization parallel or
perpendicular to the axis of uniaxial anisotropy is incident upon the composite, the local-field
averages are given by [3]

p〈E2
1〉α =

∫ 1

0
ds ′

s2mα(s
′)

(s − s ′)2E
2
0 (10)

p〈|E1|2〉α =
∫ 1

0
ds ′
|s|2mα(s ′)
|s − s ′|2 E

2
0. (11)

From the average local fields, we calculate the effective nonlinear response through the
decoupling approximation [3]:

χα|E0|2E2
0 = pχ1〈|E1|2〉α〈E2

1〉α. (12)

In this work, only the metallic bond is taken to be nonlinear, i.e.,χ2 = 0. We shall compare
the EMA calculations with numerical simulations.

4. Numerical simulation

Consider a random impedance network between two parallel plates at unit potential
difference; the effective linear and nonlinear response functions are given by [13]

εe =
∑
α

εα δv
2
α (13)

χe = 1

L2

∑
α

χα|δvα|2 δv2
α (14)

where the summation is over all bonds andδvα is the (generally complex) potential difference
across the bondα, to be solved for when allχα are set to zero. We apply Kirchhoff’s law to
each of the nodes relating the potential of the node (vν) to those of its four neighbours (vµ):

4∑
µ=1

εµ(vµ − vν) = 0. (15)

Applying Kirchhoff’s law to all nodes and writing the equations in a matrix form, we
obtain a matrixM of sizeL(L − 1) × L(L − 1); M consists of nonzero elements along
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the five diagonals. This property helps us to optimize the calculation of the inverseM−1.
The effective response is obtained by taking an ensemble average over a sufficiently large
number of samples.

5. Results and discussion

Both the effective-medium calculations and the numerical simulation are performed on
networks in whichε1 is metallic andε2 is dielectric. The metallic response is assumed to
obey the Drude free-electron model:

ε1(ω) = 1− ω2
p

ω(ω + iγ )
(16)

whereωp is the plasma frequency andγ is the damping constant. We choose a damping
constantγ = 0.1ωp and ε2 = 1.77 which is the dielectric constant of water for model
calculations. The metallic bond is taken to be nonlinear.

We calculate the effective response in four cases of increasing anisotropy:p‖ = 0.1,
p⊥ = 0.1 (isotropic case);p‖ = 0.2, p⊥ = 0.05; p‖ = 0.5, p⊥ = 0.02; andp‖ = 0.9,
p⊥ = 0.011. We performed numerical simulations on various network sizes. After
comparing the results for different network sizes, we conclude thatL = 15 is sufficient
for the present investigation. A further increase in the network size results in no significant
difference. This is because the optical response arises from the geometric resonances, rather
than from the percolating effects. Each data point represents an ensemble average over 1000
random samples withL = 15. The resonance positions of the four types of lattice animals
are indicated by vertical dashed lines as a guide to the eye. The probabilities of occurrence
for these four lattice animals for various anisotropies are listed in table 2 and table 3.

5.1. The parallel response

For the optical field polarized along the axis of uniaxial anisotropy, we plot the spectral
functionm‖(s) for four different anisotropies in figure 3. For the isotropic case (p‖ = 0.1),

Table 2. Probabilities of occurrence of the dominant lattice animals for parallel field.

p‖ = 0.1, p‖ = 0.2, p‖ = 0.5, p‖ = 0.9,
Type p⊥ = 0.1 p⊥ = 0.05 p⊥ = 0.02 p⊥ = 0.011

(a) 0.0531 0.1043 0.1153 0.0086
(b) 0.0172 0.0133 0.0023 0.0000
(c) 0.0043 0.0188 0.0554 0.0076
(d) 0.0035 0.0120 0.0138 0.0000

Table 3. Probabilities of occurrence of the dominant lattice animals for perpendicular field.

p‖ = 0.1, p‖ = 0.2, p‖ = 0.5, p‖ = 0.9,
Type p⊥ = 0.1 p⊥ = 0.05 p⊥ = 0.02 p⊥ = 0.011

(a) 0.0531 0.0185 0.0012 0.0000
(b) 0.0172 0.0133 0.0023 0.0000
(c) 0.0043 0.0006 0.0000 0.0000
(d) 0.0035 0.0005 0.0000 0.0000
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Figure 3. The spectral function for parallel optical field. (a)p‖ = 0.1, p⊥ = 0.1, (b)p‖ = 0.2,
p⊥ = 0.05, (c)p‖ = 0.5, p⊥ = 0.02 and (d)p‖ = 0.9, p⊥ = 0.011.

Figure 4. The absorption spectrum for parallel optical field plotted as a function of the frequency
ω/ωp . (a) p‖ = 0.1, p⊥ = 0.1, (b) p‖ = 0.2, p⊥ = 0.05, (c) p‖ = 0.5, p⊥ = 0.02 and
(d) p‖ = 0.9, p⊥ = 0.011.

the spectral function is well described by the lattice animals limit. However, the resonance
peaks are shifted for two reasons. First, the peaks are not symmetric as can be seen from
figure 2 and a damping leads to a shift of the peaks. Second, the lattice animals are in fact
not isolated; their resonance spectra are affected by clusters in proximity. Hence, even in
the lattice animals limit, the EMA cannot reproduce the fine structure of the lattice animals
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resonances. It gives instead a broad continuous function. As the anisotropy increases
(p‖ = 0.2), the spectral function is well described by the cluster limit. The peaks are
generally larger in height, as expected from table 2 and the sum rule. A further increase
in anisotropy (p‖ = 0.5) results in a red-shift of the spectral density. For the extremely
anisotropic case (p‖ = 0.9), a Drude peak ats = 0 indicates that a percolating cluster is
formed. The EMA results generally fit the simulation results very well. In the case of large
anisotropy, the population of lattice animals becomes negligible, as is evident from table 2.
Sharp resonance peaks in the spectral region 0.3< s < 0.7 are therefore suppressed.

Next, for the optical absorption spectrum (figure 4), the results are very similar to that
for the spectral function. The EMA results generally show a good agreement with the simul-
ation results As the anisotropy increases, the absorption peak shifts to the low-frequency
region.

Figure 5. The nonlinearity enhancement spectrum for parallel optical field plotted as a function
of the frequencyω/ωp . (a) p‖ = 0.1, p⊥ = 0.1, (b) p‖ = 0.2, p⊥ = 0.05, (c) p‖ = 0.5,
p⊥ = 0.02 and (d)p‖ = 0.9, p⊥ = 0.011.

For the parallel effective nonlinear susceptibility as shown in figure 5, the nonlinearity is
initially enhanced by the anisotropy (p‖ = 0.2). A further increase in anisotropy results in a
drastic decrease in the nonlinearity (p‖ = 0.5 and 0.9). The EMA predictions are generally
smaller than those of the numerical simulation. The discrepancy is due to the decoupling
approximation for analytic calculations of the nonlinear susceptibility. The EMA result may
be regarded as a lower bound for the accurate response. Nevertheless, the EMA results agree
qualitatively with that of numerical simulation. A red-shift of the nonlinearity enhancement
peak is found when the anisotropy increases.

5.2. The perpendicular response

For the optical field polarized perpendicular to the axis of uniaxial anisotropy, we plot
the spectral function in figure 6. As expected from equation (7), the spectral function is
suppressed progressively as the anisotropy increases. The dominant peak splits into two
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Figure 6. The spectral function for perpendicular optical field. (a)p‖ = 0.1, p⊥ = 0.1,
(b) p‖ = 0.2, p⊥ = 0.05, (c)p‖ = 0.5, p⊥ = 0.02 and (d)p‖ = 0.9, p⊥ = 0.011.

Figure 7. The absorption spectrum for perpendicular optical field plotted as a function of the
frequencyω/ωp . (a) p‖ = 0.1, p⊥ = 0.1, (b) p‖ = 0.2, p⊥ = 0.05, (c)p‖ = 0.5, p⊥ = 0.02
and (d)p‖ = 0.9, p⊥ = 0.011.

peaks towards both the high- and low-frequency limits. The decrease of the spectral function
in the region 0.3< s < 0.7 can be explained using table 3. As the anisotropy increases, the
occupation probabilities of the lattice animals decrease monotonically, leading to a trough
in the spectral density. There is a peak on the high-frequency side which does not appear
in the parallel-field case.
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The absorption spectrum (figure 7) is similar to the spectral density. As the anisotropy
increases, the absorption is suppressed drastically. A splitting of peaks is also evident.
Furthermore, the absorption is larger in the low-frequency region, leading to a red-shift of
the overall optical absorption.

Figure 8. The nonlinearity enhancement spectrum for perpendicular optical field plotted as a
function of the frequencyω/ωp . (a)p‖ = 0.1,p⊥ = 0.1, (b)p‖ = 0.2,p⊥ = 0.05, (c)p‖ = 0.5,
p⊥ = 0.02 and (d)p‖ = 0.9, p⊥ = 0.011.

The nonlinear response is plotted as figure 8. As in the parallel-field case, the EMA
results agree with the numerical simulation only qualitatively. A blue-shift of the peak is
obtained, which is in the opposite direction to that for the absorption.

6. Conclusions

By introducing microstructure into composite materials, the probabilities of occurrence of
the lattice animals are modified, resulting in a change of the optical response. In this work,
numerical simulations are performed and a comparison with analytic approximation (EMA)
is made for the anisotropic microstructure. Previous analytic calculations of the nonlinear
response rely on the decoupling approximation, which clearly underestimates the actual
nonlinear response. On the other hand, the simulation results are in principle numerically
exact. While the analytic EMA linear response agrees reasonably well with the numerical
one, it is evident that the decoupling approximation always underestimates the nonlinear
response.

For anisotropic microstructures, the optical response is found to be extremely sensitive
to the degree of anisotropy. A suppression of the absorption and a concomitant red-shift of
the absorption peak are demonstrated. Thus by manipulating the microstructure, the analysis
through the spectral representation may give a clear pathway for continuously improving
the figure of merit.

In closing, we mention that the predicted enhancement may have relevance to a recent
optical-nonlinearity experiment on Au:SiO2 composites [14], in which a large enhancement
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was obtained for annealed samples. Through the separation of the absorption peak from the
nonlinearity enhancement peak, it may be possible to achieve even larger optical nonlinearity
than that reported in reference [14].
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